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Abstract— This paper addresses the problem of equivalence
verification of RTL descriptions. The focus is on datapath-
oriented designs that implement polynomial computations over
fixed-size bit-vectors. When the size (m) of the entire datapath
is kept constant, fixed-size bit-vector arithmetic manifests itself
as polynomial algebra over finite integer rings of residue classes
Z2m . The verification problem then reduces to that of checking
equivalence of multi-variate polynomials over Z2m . This paper
exploits the concepts of polynomial reducibility over Z2m and
derives an algorithmic procedure to transform a given poly-
nomial into a unique canonical form modulo 2m. Equivalence
testing is then carried out by coefficient matching. Experiments
demonstrate the effectiveness of our approach over contemporary
techniques.

I. INTRODUCTION

RTL descriptions of integer datapaths that implement poly-
nomial arithmetic are found in many practical designs, par-
ticularly in digital signal processing (DSP) for audio, video
and multimedia applications. Such designs perform a sequence
of ADD, MULT, SHIFT type of algebraic computations that
can be modeled as multi-variate polynomials of finite degree.
Initial algorithmic specifications of such systems involve data
representation using floating-point formats. However, they
are often implemented with fixed-point architectures in order
to optimize the area, delay and power related costs of the
implementations. In many cases, the design choice is that of a
single, uniform system word-length for the computations. Such
fixed-size datapath computations are generally implemented
using: signal truncation, rounding or saturation arithmetic.

This paper addresses the problem of RTL equivalence veri-
fication of datapath descriptions that implement polynomial
computations over fixed-size bit-vectors by way of signal
truncation. In such designs, m-bit adders and multipliers
produce an m-bit output; only the lower m-bits of the outputs
are used and the higher-order bits are ignored. When the
datapath size (m) over the entire design is kept constant, then
fixed-size bit-vector arithmetic manifests itself as polynomial
algebra over finite integer rings of residue classes Z2m ; i.e.
addition and multiplication is closed within the finite set of
integers {0, . . . , 2m − 1}. In such cases, symbolically distinct
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polynomials (those with different degrees and coefficients) can
become computationally equivalent. The equivalence verifica-
tion problem then reduces to that of proving the computational
equivalence: f(x1, . . . , xd)%2m ≡ g(x1, . . . , xd)%2m, where
f, g are polynomials in d variables x1, . . . , xd, and m =
datapath size; in other words, to prove f(x1, . . . , xd) ≡
g(x1, . . . , xd) in Zd

2m .

A. Motivating the Verification Problem

Let us motivate the equivalence verification problem as it
appears in the context of our work. Fig. 1 depicts a typical
design flow for DSP applications. The floating-point MATLAB
model is automatically converted to a fixed-point model; which
is subsequently translated into RTL. Automatic translation
utilities are available for this purpose [1]. The verification
problem instance is that of checking the equivalence of the
fixed-point design against the translated (and optimized) RTL
models.
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Fig. 1. The Equivalence Verification problem: Matlab to RTL flow.

As an example, consider the anti-alias function of an MP3
decoder that computes [2]: F = 1

2
√

a2+b2
under the assumption

that a2 + b2 > 0. Computing x = a2 + b2, the function can
be implemented as F = 1

2
√

x
. The given equation can be

approximated using the Taylor series expansion for a range
of x based on the given application. Under the constraint that
the datapath size is to be fixed to 16-bits, the computation



F [15 : 0] (scaled appropriately) can be represented in RTL as:

F [15 : 0] = 156(X [15 : 0])6 + 62724(X [15 : 0])5

+17968(X [15 : 0])4 + 18661(X [15 : 0])3

+43593(X [15 : 0])2 + 40224(X [15 : 0])

+13281

Application of high-level synthesis or symbolic algebra
based manipulation techniques [2] [3] to the above may
transform the RTL implementation to:

G[15 : 0] = 156(X [15 : 0])6 + 5380(X [15 : 0])5

+1584(X [15 : 0])4 + 10469(X [15 : 0])3

+27209(X [15 : 0])2 + 7456(X [15 : 0])
+13281

Note that polynomially, F �= G because they have different
coefficients; but because the datapath size is fixed to 16 bits
F [15 : 0] ≡ G[15 : 0], or in other words F%216 ≡ G%216.

So how do we prove that the above computations are indeed
equivalent? An algorithmic solution to this problem is the
subject of this paper.

II. LIMITATIONS OF CONTEMPORARY APPROACHES

It is evident that Binary Decision Diagrams (BDDs) [4],
Binary Moment Diagrams (BMDs) [5], K*BMDs [6] and their
derivatives are ill-suited for our application; mostly due to
the presence of high-degree polynomial computations over
wide bit-vectors. TEDs [7] have been proposed as canonical
DAG representations for multi-variate polynomials. However,
TEDs do not model modulo-arithmetic and thus cannot prove
polynomial equivalence over finite integer rings.

Modulo arithmetic concepts have been studied in the context
of RTL verification for bit-vector arithmetic [8] [9], word-
level ATPG [10] and MILP-based simulation vector generation
[11]. However, these are mostly geared toward solving linear
congruences under modulo arithmetic - a different application
from proving polynomial equivalence modulo 2m. There exist
various applications (such as FIR, IIR, Kalman, Elliptical wave
filters, FFT, etc.) whose RTL computations have been veri-
fied using: co-operative decision procedures, theorem provers
(HOL), term-rewriting, and congruence closure based tech-
niques [12]. DSP implementations of the above applications
are mostly linear and/or multi-linear forms - which are easy
to verify. However, for polynomial equivalence in Z2m , such
approaches are not very efficient.

Within the scope of Symbolic Computer Algebra, tools such
as [13] [14] do provide algorithmic solutions to polynomial
equivalence over a variety of rings. However, these solutions
are available for fields (R, Q, C), prime rings Zp, integral
and Euclidean domains - collectively called the unique fac-
torization domains (UFDs). Within UFDs, computer algebra
systems solve the equivalence checking problem by uniquely
factorizing an expression into irreducible terms and comparing
the coefficients of the factored terms ordered lexicographically.

Efficient algorithms for factorization have been developed [15]
[16], which can be readily used for this purpose. However, in
the case of our application, the finite integer ring formed by
specific modulo value 2m is a non-UFD, due to the presence
of zero divisors (e.g., 4 �= 2 �= 0, 4 · 2 = 0 in Z8).
Since Z2m is a non-UFD, any polynomial in Zd

2m cannot
be uniquely factorized into irreducible terms. For example,
consider f(x) = x2−x in the non-UFD Z6; f factorizes in two
(non-unique) irreducible forms: (x)(x−1) and (x−3)(x−4).
On the same lines, techniques using the concepts of Grobner’s
bases [17] [2] find extensive application in UFDs. However,
for the above reasons, they cannot be directly ported to
solve the above problem in the non-UFD Z2m . The symbolic
algebra libraries ZEN [18] and NTL [19] allow for polynomial
manipulation (factorization, multiplication, primality testing
etc.) over rings of the type Zn, n = integer, as well as
over their polynomial extensions. However, to the best of
our knowledge, a “ready-made” algorithmic procedure to test
f(x1, . . . , xd)%2m ≡ g(x1, . . . , xd)%2m is not available.

A. Related Work in Number Theory & Polynomial Algebra

The problem f(x1, . . . , xd)%n ≡ g(x1, . . . , xd)%n is
known to be NP-hard when n ≥ 2 [20]. Researchers from
the field of number theory and commutative algebra have
analyzed properties of polynomials over arbitrary finite integer
rings. Singmaster [21] presented the theory of univariate
vanishing polynomials over Zn, n ∈ N, n > 1; i.e. those
polynomials f such that f(x)%n ≡ 0. For example, 2x2 +
2x ≡ 0%4, ∀x ∈ Z4; hence 2x2+2x is a vanishing polynomial
in Z4. He identified necessary and sufficient conditions for a
univariate polynomial to vanish %n. The equivalence test for
f(x) ≡ g(x) in Zn can then be re-formulated as determining
whether (f(x) − g(x))%n ≡ 0. However, in digital design,
we mostly encounter multi-variate polynomials. Hungerbuhler
and Specker [22] extend the concepts from [21] and derive
a unique/canonical form representation of a multi-variate
polynomial over finite integer rings of the form Zpm , where
p is any prime integer. Their result suits our application as in
our case p = 2.

The main contributions of this paper are: i) We formulate
the fixed-vector-size (m) RTL datapath verification problem
as polynomial equivalence in Z2m ; ii) From the concepts pre-
sented in [22], we derive a systematic algorithmic procedure
that operates on the given polynomials in Z2m and reduces
them to a unique canonical form; iii) We extract the data-flow
graphs (DFG) corresponding to the given RTL descriptions
and construct their polynomial representations by traversing
the DFGs from inputs to outputs. The polynomials are then
reduced to their canonical forms and the equivalence check
is performed by coefficient-matching. iv) Experimentally, we
demonstrate that the proposed approach is able to verify the
equivalence of high-degree polynomial RTL datapaths (real-
world benchmarks), where contemporary methods prove to be
impractical.



In the rest of the paper, we use the notation Z2m [x1, . . . , xd]
or Zd

2m , to denote the ring of polynomials %2m over the d
variables x1, . . . , xd. Polynomial addition and multiplication
is performed %n (n = 2m) according to the rules below.

(a + b)%n = (a%n + b%n)%n (1)

(a · b)%n = (a%n · b%n)%n (2)

(−a)%n = (n − a%n)%n (3)

III. VANISHING POLYNOMIALS OVER FINITE RINGS

It is a well-known result in number theory that for any
n ∈ N , n! divides the product of n consecutive numbers. For
example, 4! divides 4× 3× 2× 1. But this is also true of any
n consecutive numbers: 4! also divides 99× 100× 101× 102.
Consequently, it is possible to find the least k ∈ N such that
n|k!. This value k corresponds to the Smarandache function,
SF(n)[23]. In the ring of interest, Z2m , let SF (2m) = k,
such that 2m|k!. As an example, SF (23) = 4 as 8 divides
4! = 4 × 3 × 2 × 1 = 23 × 3. Note that 8 does not divide 3!,
and hence the least k = 4.

This property can be utilized to treat the equivalence prob-
lem as a divisibility issue in Z2m , i.e. f−g ≡ 0 ⇒ 2m|(f−g).
In Z23 , let 8|(f−g). But, 8|4! too. Therefore, if (f−g) can be
represented as a product of 4 consecutive numbers, then (f−g)
would vanish in Z23 . So, what is a natural example of such a
polynomial? The answer is (x+1)(x+2)(x+3)(x+4). In this
regard, Singmaster [21] proposed a set of monic polynomials
(with leading coefficient = 1), Sk, where each Si represents
(in polynomial form) a product of i consecutive numbers;
S0(x) = 1, S1(x) = x + 1, . . . , Sk(x) = (x + k) · Sk−1(x).
Any expression in Z2m [x] that can be factored into at least Sk

(where k = SF (2m)), will be divisible by 2m and vanish.
Example 3.1: Consider a polynomial computation p in vari-

able x over Z28 (representing an 8-bit polynomial datapath).
p = x10 + 55x9 + 40x8 + 230x7 + 77x6 + 167x5 + 98x4 +

156x3 + 168x2 + 32x
In Z28 , SF (28) = 10. If p can be factorized into a product
of 10 consecutive numbers (or S10(x)), then p is a vanishing

polynomial. Indeed, in Z28 , p can be written as
∏10

i=1(x+i) =(
x + 10

10

)
10!.

When a polynomial cannot be factored into such Sk expres-
sions, can it still vanish? Consider the quadratic polynomial
4x2 +4x in Z8. It can be written as 4(x+2)(x+1). However,

4x2 + 4x cannot be factorized as
∏4

i=1(x + i) = (x + 4)(x +
3)(x+2)(x+1). The missing factors, (x+4)(x+3) in this case,
are compensated for by the multiplicative constant 4; therefore,
4x2+4x ≡ 0%8. Singmaster identified the constraints on such
multiplicative constants such that the polynomial in question
would vanish. We state the following result.

Lemma 3.1: The expression b · Sk(x) ≡ 0 in Z2m [x] if
and only if 2m

(k!,2m) |b; where (k!, 2m) is the greatest common

divisor (GCD) of k! and 2m, b ∈ Z2m and Sk(x) is as defined
above.

Example 3.2: Let us explain the above concept with the
help of the previous example. Let p(x) = 4x2 + 4x in Z23 .
Note that p(x) = 4(x+2)(x+1) = 4·S2(x). Therefore, in this

case, b = 4, k = 2; and 23

(2!,23) (=4) divides b (=4). Because

the above condition is satisfied, p(x)%23 ≡ 0. Note that, if b
were replaced by 3, then p(x) = 3(x + 2)(x + 1) would not

be a vanishing polynomial as 23

(2!,23) does not divide 3.

Singmaster extended this result to develop a canonical
representation of a univariate polynomial that vanishes over
any finite integer ring. We have studied this work and applied
it to verification of univariate polynomial datapaths in [24].

The above concept of vanishing polynomials leads to the
concept of reducibility. For example, in Z23 , 4x2 +4x ≡ 0 ⇒
4x2 ≡ −4x%8 ⇒ 4x2 ≡ (8 − 4)x%8 ⇒ 4x2 ≡ 4x%8.
In other words, 4x2 can be reduced to 4x. Hungerbuhler and
Specker [22] extend the concept of polynomial reduction to the
multi-variate case. In the next section, we present the necessary
theoretical foundation to perform the requisite reductions on
multi-variate polynomials.

IV. REDUCIBILITY OF MULTI-VARIATE POLYNOMIALS

We use the following multi-index notation in the rest of
the paper [22]: k =< k1, k2, . . . , kd > are the degrees
corresponding to the d variables x =< x1, x2, . . . , xd >,
respectively.

xk =
d∏

i=1

xki

i

k! =
d∏

i=1

ki!

(
x
k

)
=

d∏
i=1

(
xi

ki

)

In the above notation, the monomial 4x1
2x2 can be rep-

resented in the above notation as axk ≡ ax1
k1x2

k2 , where,
a = 4, k1 = 2, k2 = 1, k =< 2, 1 > and k! = 2! · 1! = 2.

We consider the following results. The proofs are available
in [22] and are not reproduced.

Lemma 4.1: Let a be an element of Z2m . If 2m|ak! then the

polynomial q(x) = ak!
(

x + k
k

)
is a vanishing polynomial

over Z2m and the term of maximal degree is axk.
Example 4.1: Consider the polynomial f1(x) = 4x2+4x ∈

Z23 of degree 2. f can be represented as 4 · 2! ·
(

x + 2
2

)
.

Here, a = 4 and k! = kx! = 2 and clearly, 23|4 · 2!.
Now consider another polynomial in two variables f2(x, y) =
4x2y +4xy +4x2 +4x in Z8 which is equivalently written as

4·2!·
(

x + 2
2

) (
y + 1

1

)
. Here, a = 4 and k! = kx!·ky! =



2! · 1! = 2, and 23|4 · 2. Based on Lemma 4.1, both f1 and f2

are vanishing polynomials.

Lemma 4.2: axk is reducible iff 2m|ak!.
Lemma 4.2 provides the necessary and sufficient conditions

to reduce a given monomial (axk) in d variables over Zd
2m .

Using the two Lemmas, reduction is carried out by subtracting
a vanishing polynomial of the same total degree. In other

words, if 2m|ak!, then axk = axk − q(x). The resulting
polynomial now has a lesser total degree (though it may have
more terms).

Example 4.2: Consider the term 4x2y in f2 from Example
4.1. Reduction in Z23 is carried out by subtracting a vanishing
polynomial of degree-2 in x and degree-1 in y, given by
Lemma 4.1. Here, x =< x, y > and k =< 2, 1 >.

4x2y = 4x2y − 4 · 2! ·
(

x + 2
2

) (
y + 1

1

)

= 4x2y − 4(x + 2)(x + 1)(y + 1)

= 4xy + 4x2 + 4x

In the above expression, 4x2 can be further reduced to 4x (as
4x2 + 4x ≡ 0%23). Therefore, 4x2y ≡ 4xy + 4x + 4x ≡
4xy%23.

A. Canonical representation of polynomials modulo 2m

The above concepts of monomial reductions can be applied
to a given polynomial, iteratively, and the polynomial can be
reduced to a minimal, unique canonical form. For this purpose,
we first define the following concept.

Definition 4.1: We define ν2(k!) as the maximum degree x
such that 2x divides k!:

ν2(k!) = max{x ∈ N : 2x|k!}
For example, ν2(4!) = 3. Note that ν2(k!) gives the number-
of-factors-2 in k!.

The above results lead to the following canonical form for
polynomials in Zd

2m [22].
Theorem 1: Every polynomial f in Zd

2m has a unique
representation of the form

f = Σk∈Nd αkxk (4)

where ν2(k!) < m and αk ∈ {0, 1, · · · , 2m−ν2(k!) − 1}.
Proof: While the proof of this theorem is provided in

[22], we highlight the key concepts as they allow us to derive a
systematic algorithmic procedure to reduce a given polynomial
to the above canonical form.

The representation exists: Let axk be the monomial of
the highest total degree that appears in f . If 2m divides ak!,
then from Lemma 4.2 it can be reduced and replaced with a
polynomial of lower degree. Such a reduction can be applied

to all monomials axk if 2m|ak!.
Now, lets us consider those terms in f where 2m does not

divide ak!. This guarantees that 2m does not divide k! and
therefore, ν2(k!) < m. Now, let us analyze the coefficient
a. Let s = ν2(k!). Since, 2m does not divide ak!, 2m−s

cannot divide a (otherwise, 2m would divide ak!). Therefore,
the coefficient a can be divided by 2m−s as follows:

a = q · 2m−s + r (5)

where q is the quotient and r is the remainder. Moreover,
0 ≤ r < 2m−s. So

axk = q · 2m−s · xk + r · xk (6)

Note that the term q ·2m−s ·xk is again reducible, from Lemma

4.2. The second term, r · xk, is already in reduced form since

r < 2m−s = 2m−ν2(k!).
The representation is unique: It suffices to argue that for

any two non-unique equivalent polynomials f and g, f − g =
Σk∈Nd αkxk � 0 implies that all coefficients are zero.

Example 4.3: Let us re-visit Example 4.2: the monomial
4x2y in Z23 . In this case, k! = 2. Moreover, αk = 4
and ν2(k!) = ν2(2!) = 1. Clearly αk /∈ {0, 1, · · · , 23−1 −
1} = {0, 1, 2, 3}. Hence, it is not in canonical form and
can be reduced by subtracting a vanishing polynomial, as
shown in Example 4.2. The resulting monomial 4xy has
αk = 4 ∈ {0, 1, · · · , 23−0 − 1} = {0, 1, · · · , 7}. This is the
minimal unique form representation and further reduction is
not possible.

Now consider the monomial 5x2y in Z23 . Here, αk = 5 and
ν2(2!) = 1. Note that, 23 does not divide 5·2!. Moreover, αk =
5 /∈ {0, 1, 2, 3}. Therefore, we represent 5x2y = 4x2y + x2y.
As shown above, 4x2y can be reduced to a lower total degree
and x2y is already in reduced form.

Note that the proof of the above theorem allows us to derive
an algorithmic procedure to reduce a given polynomial to its
unique canonical form. The procedure operates as follows:

1) Order the terms in descending term-order [2] of their
highest total degree.

2) For the highest degree term, if 2m|ak!, reduce it.
3) Otherwise, check to see if the coefficient αk ∈

{0, 1, · · · , 2m−ν2(k!)−1}. If yes, then the term cannot be
reduced further and is in its canonical form. Otherwise,
the coefficient can be reduced as shown in Example 4.3.

4) Apply the above procedure repeatedly to all monomial
terms.

Note that the procedure converges. Ordering the terms in
the first step above, ensures that a monomial of particular
total degree is reduced only once. The algorithm is given
in Algorithm 1 where the number of monomial reductions is
bound by O(kd), where k is the highest degree and d is the
number of variables.

Example 4.4: Let us consider the anti-alias function intro-
duced in Sec. I. Two different implementations of this function
were correctly verified by the algorithm. A sample verification
run for the polynomial F is shown below:
F = 156∗x6 +62724∗x5+17968∗x4+18661∗x3+43593∗
x2 + 40224 ∗ x + 13281
Reducing 62724 ∗ x5 ...



F = 156 ∗ x6 +5380 ∗x5 + 9776 ∗ x4 + 59621 ∗x3 + 51785 ∗
x2 + 56608 ∗ x + 13281
Reducing 9776 ∗ x4 ...
F = 156 ∗ x6 +5380 ∗x5 + 1584 ∗ x4 + 43237 ∗x3 + 27209 ∗
x2 + 40224 ∗ x + 13281
Reducing 43237 ∗ x3 ...
F = 156 ∗ x6 +5380 ∗x5 + 1584 ∗ x4 + 10469 ∗x3 + 27209 ∗
x2 + 7456 ∗ x + 13281
F is now in canonical form.

POLY REDUCE(poly, d, m, var list)
poly = Multi-variate polynomial of bit-width m;
var list = list of d constituent variables in poly;
Order the monomials in poly in decreasing term-order;
for each monomial mon in poly do

a = Coefficient (mon)
for each variable vi in var list do

ki = Degree(vi) in mon;
end for

k! =
∏

ki!;
ν2(k!) = Σν2(ki!);

αk = 2m−ν2(k!) − 1;

if (2m|ak!) then
/*Monomial is degree-reducible: Subtract vanishing polyno-
mial*/
mon = mon − a ∗ ∏d

j=1

∏kd

i=1
(vj + i);

else
/*Condition from Theorem 1*/;
if (a > αk) then

/*Monomial is coefficient-reducible*/

quo = quotient[ a
(αk+1)

]; rem = remainder[ a
(αk+1)

];

/*Quotient is degree-reducible. Subtract vanishing polyno-
mial*/
reduce quo = quo(αk +1)(

∏d

j=1
v

kj

j −∏d

j=1

∏kj

i=1
(vj +

i));
/*Build reduced monomial*/
mon = reduced quo + rem

∏d

j=1
(v

kj

j );

end if
end if
Update poly with the reduced mon, if required;
if (poly == 0) then

return 0;
end if

end for

return poly;

Algorithm 1: ALGORITHM POLY REDUCE: Reduction of
a given polynomial.

V. EXPERIMENTS

We have implemented Algorithm 1 described in Sec. IV
in Perl with calls to MAPLE 7 [13] for all the algebraic
manipulations. The data-flow graph for the given RTL de-
scriptions is extracted using GAUT [25]. Traversing the DFG
from the inputs to the outputs, the polynomial representations
are constructed. The datapath size (m) is also recorded.
The algorithm is applied to reduce the two polynomials to

their canonical forms. Equivalency check is carried out by
coefficient-matching.

We have tested our algorithm with a number of designs col-
lected from a variety of benchmark suites, as shown in Table
I. The first two examples [2] are phase-shift keying and anti-
aliasing functions, both used in digital communication. The
degree-3 and degree-4 filter designs [26] are Volterra models
of polynomial signal processing applications. Horner forms
of polynomials, used for faster signal processing, are from
[3]. MIBench is a 9th-degree polynomial from [27]. The last
example is a vanishing polynomial of degree 10, specifically
created to validate our algorithm. The time reported is the
total time for canonizing both polynomials and that required
for subsequent coefficient matching. The two descriptions
to be verified are symbolically different but computationally
equivalent. The number of variables, the highest degree that a
variable appears in a term, and the datapath size are shown in
column 2. For example, Savitzky-Golay filter has 5 variables,
highest degree of each being 3, and bit-width = 16.

We have performed equivalence checking of the given
RTL designs using BDDs, BMDs, SAT and MILP based
approaches. Since gate-level descriptions are required by both
BDDs and SAT, we synthesized our designs using a com-
mercially available logic synthesis tool. BDDs were used to
verify the the resulting netlists using the VIS[28] package.
It was found that though BDDs could solve the problem for
some of the smaller benchmarks (especially for univariate
polynomials), they failed for the rest of the designs.

From the gate-level netlists corresponding to the two de-
signs, we generated miter circuits and converted them to
CNF format. ZChaff [29] was used to prove equivalence
via unsatisfiability testing. For all the designs, ZChaff could
not solve the problem within the time-limit of 500s. For
equivalence via MILP solving [11], linear inequalities were
created from their data-flow graphs. Equivalency f ≡ g was
tested via proving UNSAT (f �= g). The reason why MILP
failed was because linearizing Xk

m requires expanding it into
its constituent m bits. LPSOLVE was used as the resolution en-
gine. Since BMD packages are not available in public domain,
the TED[7] package was suitably modified to construct BMDs.
Note that BMD decomposition is a special case of TEDs; when
all variables are Boolean, the TED reduces to a BMD. We
attempted to construct the BMDs from the synthesized gate-
level netlists corresponding to the original RTL descriptions.
Because of the presence of high-degree polynomial terms, the
graph could be constructed only for the smaller benchmarks.
The other benchmarks could not be verified within the time-
out limit.

The last benchmark is a “vanishing polynomial” in 2
variables. We wanted to verify that the outputs always compute
zero. Interestingly, (commercial) logic synthesis tools gener-
ated a redundant, non-empty circuit. To verify that the circuit
was indeed redundant, we attempted to construct both BDDs
and BMDs, but were unable to do so. While BDDs ran out of



TABLE I
COMPARISON OF TIME TAKEN BY VARIOUS APPROACHES

Benchmark Specs Our approach BDDs-VIS BMD SAT-ZChaff MILP
Var/Deg/m Time (s) Nodes/Time(s) Nodes/Time(s) Vars/Clauses/Time(s) Time(s)

PSK 2/4/16 13.48 NA/>500 NA/>500 52K/142K/>500 >500
Anti-alias function 1/6/16 6.81 1.2M/34.2 NA/>500 3.9K/107K/>500 >500
Cubic filter 3/3/32 8.27 NA/>500 NA/>500 141K/417K/>500 >500
Degree-4 filter 3/4/16 18.72 NA/>500 NA/>500 60K/166K/>500 >500
Savitzky-Golay filter 5/3/16 13.51 NA/>500 NA/>500 69K/200K/>500 >500
MIBENCH 2/9/16 28.13 0.1M/13 NA/>500 15K/42K/>500 >500
Horner Polynomial 1 3/4/16 3.56 NA/>500 2355 / 85 13K/36K/>500 >500
Horner Polynomial 2 3/4/16 3.55 NA/>500 1574 / 47 12K/34K/>500 >500
Horner Polynomial 3 2/4/16 4.53 NA/>500 6803 / 246 25K/75K/>500 >500
Polynomial Unopt. 1/4/16 2.79 0.5M/9.1 2705 / 69 10K/28K/>500 >500
Vanishing polynomial 2/10/16 15.19 NA/>500 NA/>500 10K/29K/>500 >500

memory, BMD-composition operations did not terminate.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a polynomial algebra based frame-
work for equivalence verification of arithmetic datapaths.
The targeted applications are polynomial computations imple-
mented with fixed-size bit-vectors. The concept of polynomial
reducibility over finite rings, Z2m , is exploited to transform a
given polynomial to a unique canonical form. The equivalence
checking is carried out using coefficient matching. A variety
of benchmarks were verified using the proposed method. Our
algorithm was able to solve the problem in all cases, where
established techniques failed.

As part of future work, we are currently looking to ex-
tend the concepts presented in this paper to verify fixed-size
datapaths that implement rounding schemes by ignoring the
lower order bits. We would also like to explore verification of
datapaths with multiple word-lengths.
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